ENCI707: Engineering Demand and Policy Analysis
A multinomial choice reduced into an equivalent binary choice problem:
\[π_π \ge \max_{j,j' \in C_i, j \neq j'} U_{j'}\] \[π_π \ge π_π \text{; } k \neq j \text{ & } j,k \in C_i\]
where \(C_i\) is the choice set of decision maker \(i\), \(j\) is the best alternative, and \(k\) is the second best alternative
Probability of choosing alternative j:
\[Prβ‘(π) = Prβ‘((π_π+\epsilon_π) \ge (π_π+\epsilon_π ))\] \[Prβ‘( π)=Prβ‘(\epsilon_π \leq (π_πβπ_π+\epsilon_π )) \text{ (a CDF function)}\]
A multinomial choice reduced into an equivalen Choice probability in a multinomial choice context: \[Prβ‘(π)=Prβ‘(\epsilon_π \leq (π_πβπ_π+\epsilon_π ))\]
Probability distribution of random utility (\(\epsilon\)) needs to be fully specified to get the unconditional probability: \[Prβ‘(π)=\int_{\epsilon_π=β\infty}^{+\infty}\int_{\epsilon_π=β\infty}^{π_πβπ_π+\epsilon_π} π(\epsilon_π,\epsilon_π)π \epsilon_π π \epsilon_π\]
Notes:
\[ \left( \frac{1}{\mu} \ln \sum_{k \neq j \text{ & } π,π \in πΆ_π} e^{\mu V_k}, \mu \right)\]
We can write that the second-best alternative is \[U^β= V^β+\epsilon^β \text{, } V^* = \frac{1}{\mu} \ln \sum_{k \neq j \text{ & } π,π \in πΆ_π} e^{\mu V_k}\]
Now for the probability of choosing alternative \(j\) (equivalent binary logit form) \[Prβ‘(π)=Prβ‘\left((π_π+\epsilon_π) \ge \max_{k \neq j \text{ & } π,π \in πΆ_π} (V_k + \epsilon_k)\right)\] \[Prβ‘(π)=Pr\left((π_π+\epsilon_π) \ge (π^β+\epsilon^β)\right)\] \[Prβ‘(π)=Prβ‘\left((π^β+\epsilon^β)β(π_π+\epsilon_π) \leq 0\right)=Pr\left((\epsilon^ββ\epsilon_π) \leq(π_πβπ^β)\right)\]
\[Prβ‘( π)=\frac{1}{1+π^{\mu(π^ββπ_π)}} = \frac{e^{\mu V_j}}{e^{\mu V_j}+π^{\mu(π^ββπ_π)}}\] \[Prβ‘( π)=\frac{e^{\mu V_j}}{e^{\mu V_j}+e^{\ln \sum_{k \neq j \text{ & } π,π \in πΆ_π} e^{\mu V_k}}}= \frac{e^{\mu V_j}}{e^{\mu V_j}+\sum_{k \neq j \text{ & } π,π \in πΆ_π} e^{\mu V_k}}\] \[Prβ‘(π)=\frac{e^{\mu V_j}}{\sum_{π \in πΆ_π} e^{\mu V_k}}\]
Systematic utility function: Linear-in-parameter function \[π_1=\beta_1+\beta_π‘ π₯_{1π‘}+\beta_{1π} π₯_π+\beta_π π₯_{1π}^2+\beta_{1ππ} π₯_π^3+\beta_{1ππ} \lnβ‘(π₯_π)+\dots\] \[π_2=\beta_2+\beta_π‘ π₯_{2π‘}+\beta_{2π} π₯_π+\beta_π π₯_{2π}^2+\beta_{2ππ} π₯_π^3+\beta_{2ππ} + \lnβ‘(x_a)+\dots\] \[\vdots\] \[π_J=\beta_J+\beta_π‘ π₯_{Jt}+\beta_{Jπ} π₯_π+\beta_π π₯_{Jπ}^2+\beta_{Jππ} π₯_π^3+\beta_{Jππ} + \lnβ‘(x_a)+\dots\]
Model goodness-of-fit is measured by \(\rho^2\) value
- \(k\) = difference in total number of parameters between two models \[\rho_0^2 = \frac{LL(\beta) - LL(0)}{LL(*) - LL(0)} = 1 - \frac{LL(\beta)}{LL(0)} \text{; } adj-\rho_0^2 = 1 - \frac{LL(\beta) - k}{LL(0)}\]
\[\rho_C^2 = \frac{LL(\beta) - LL(C)}{LL(*) - LL(C)} = 1 - \frac{LL(\beta)}{LL(C)} \text{; } adj-\rho_C^2 = 1 - \frac{LL(\beta) - k}{LL(C)}\]
Validation by 1000 Bootstrap Sample Simulation
Mode | Sample Share (%) | Mean Prediction Error (%) | Max Over-Prediction (%) | Max Under-Prediction (%) |
---|---|---|---|---|
Car Driver | 26 | 0.033 | 3.26 | -2.78 |
Car Passenger | 1 | 0.015 | 0.91 | -0.71 |
Transit | 59 | -0.026 | 4.05 | -3.36 |
Bicycle | 4 | 0.001 | 2.35 | -1.72 |
Walk | 11 | -0.022 | 2.25 | -2.43 |
Disaggregate Cross elasticity/marginal effect: with respect to an attribute of different alternative \[\text{Cross ME} =\frac{\partial Prβ‘(π)}{\partial π₯_k}=Prβ‘(π)Prβ‘(k) \beta_{π₯_k}\] \[\text{Cross E}= \frac{\partial Prβ‘(π)}{\partial π₯_k}\frac{x_k}{Pr(j)}=-x_kPrβ‘(k) \beta_{π₯_k}\]
Cross elasticity is the same for all other alternative than alternative \(k\)
This is proportional substitution: an improvement in one alternative, draws proportionately from all other alternatives!
\[πΈ_{π₯_π}^π=\sum_{i=1}^n \frac{Pr_i(j)}{\sum_{i=1}^n Pr_i(j)}E_{x_k}^{Pr_i(j)}\]
\[\frac{Pr(j)}{Pr(k)} = \frac{\exp(V_j)}{\exp(V)k)} = \exp(V_j - V_k)\]
Steps for testing IIA:
Hausman and McFadden Test (Econometrica, 1984): \[(\hat{\beta}_{C^{'}}β\hat{\beta}_C)^π(\Sigma_{\hat{\beta_C^{'}}}β\Sigma_{\hat{\beta}_C})^{β1}(\hat{\beta}_{C^{'}}-\hat{\beta_C})\] - This is \(\chi^2\) distributed with degrees of freedom equal to the number of alternatives removed in the restricted model
Small and Haiso Test (International Economic Review, 1985):
\[\Delta CS = \int_{V_j^1}^{V_j^2} Pr_i(j|V_j, V_{k \in C_i, k \neq j}) d V_j = \int_{V_j^1}^{V_j^2} \frac{\exp(\mu V_j)}{\sum_{k \in C_i} \exp(\mu V_k)}d V_j\]
For Changes in only one (independent) alternative (\(j\)): \[\Delta CS = \frac{1}{\mu}\ln\left(\exp(\mu V_j^2) + \sum_{k \in C_i} \exp(\mu V_k)\right) - \frac{1}{\mu}\ln\left(\exp(\mu V_j^1) + \sum_{k \in C_i} \exp(\mu V_k)\right)\] - For changes in multiple alternatives (existence of equal or unequal cross-elasticity, e.g., nested logit, GEV, mixed logit) the integral is path dependent since it becomes conditional upon an income effect - For logit model \[\Delta CS = \frac{1}{\mu}\ln\left(\sum_{j \in C_i} \exp(\mu V_j^2)\right) - \frac{1}{\mu}\ln\left(\sum_{j \in C_i} \exp(\mu V_j^1)\right)\]
Synthetic Population | Choice Alternatives | ||||
---|---|---|---|---|---|
1 | 2 | β¦ | J | Sum | |
1 | \(Pr(1|x_1,\beta)\) | \(Pr(2|x_1,\beta)\) | . | \(Pr(J|x_1,\beta)\) | 1 |
2 | \(Pr(1|x_2,\beta)\) | \(Pr(2|x_2,\beta)\) | . | \(Pr(J|x_2,\beta)\) | 1 |
β¦ | . | . | . | . | . |
N | \(Pr(1|x_N,\beta)\) | \(Pr(2|x_N,\beta)\) | . | \(Pr(J|x_N,\beta)\) | 1 |
Sum | N(1) | N(2) | N(J) | N | |
Market share | N(1)/N | N(2)/N | N(J)/N | 1 |
Representative Sample | Choice Alternatives | ||||
---|---|---|---|---|---|
1 | 2 | β¦ | J | Sum | |
1 | \(Pr(1|x_1,\beta)\) | \(Pr(2|x_1,\beta)\) | . | \(Pr(J|x_1,\beta)\) | 1 |
2 | \(Pr(1|x_2,\beta)\) | \(Pr(2|x_2,\beta)\) | . | \(Pr(J|x_2,\beta)\) | 1 |
β¦ | . | . | . | . | . |
N | \(Pr(1|x_S,\beta)\) | \(Pr(2|x_S,\beta)\) | . | \(Pr(J|x_S,\beta)\) | 1 |
Sum | n(1) | n(2) | n(J) | \(N_S\) | |
Market share | n(1)/\(N_S\) | n(2)/\(N_S\) | n(J)/\(N_S\) | 1 |
Although there may be sampling error, the expected value should match the population average
For a βGβ stratified sample: \[\overset{\sim}{W_i} = \sum_{g=1}^G \left(\frac{N_g}{N_T}\right) \frac{1}{N_{sg}}\sum_{t=1}^{N_{sg}} Pr(j|X_t,\beta)\]
Here, \(N_g\) is the population in segment \(g\), \(N_{sg}\) is the sample population in segment \(g\), and \(N_T\) is the target population
Sample for estimation should be representative
Sample enumeration can generally be used to test policies in the short-run during which the base population sample can be assumed to remain representative
Population Strata | Choice Alternatives | ||||
---|---|---|---|---|---|
1 | 2 | β¦ | J | Sum | |
Market share | \(Pr(1|x_1,\beta)\) | \(Pr(2|x_1,\beta)\) | . | \(Pr(J|x_1,\beta)\) | 1 |
Population Strata | Choice Alternatives | ||||
---|---|---|---|---|---|
1 | 2 | β¦ | J | Sum | |
1 | \(Pr(1|x_1,\beta)\) | \(Pr(2|x_1,\beta)\) | . | \(Pr(J|x_1,\beta)\) | 1 |
2 | \(Pr(1|x_2,\beta)\) | \(Pr(2|x_2,\beta)\) | . | \(Pr(J|x_2,\beta)\) | 1 |
β¦ | . | . | . | . | . |
n | \(Pr(1|x_S,\beta)\) | \(Pr(2|x_S,\beta)\) | . | \(Pr(J|x_S,\beta)\) | 1 |
Sum | n(1) | n(2) | n(J) | n | |
Market share | n(1)/n | n(2)/n | n(J)/n | 1 |
\[\text{Choice Model: }Pr(j|x,\beta)\]
\[\text{Choice Model: }Pr(j|x,\beta)\]
\[\text{Choice Model: }Pr(j|x(j),\beta)\]